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In this paper the weighted ENO (essentially non-oscillatory) scheme developed
for the one-dimensional case by Liu, Osher, and Chan is applied to the case of
unstructured triangular grids in two space dimensions. Ideas from Jiang and Shu,
especially their new way of smoothness measuring, are considered. As a starting
point for the unstructured case we use an ENO scheme like the one introduced by
Abgrall. Beside the application of the weighted ENO ideas the whole reconstruction
algorithm is analyzed and described in detail. Here we also concentrate on technical
problems and their solution. Finally, some applications are given to demonstrate
the accuracy and robustness of the resulting new method. The whole reconstruction
algorithm described here can be applied to any kind of data on triangular unstructured
grids, although it is used in the framework of compressible flow computation in this
paper only. c© 1998 Academic Press

1. INTRODUCTION

During the last years the class of essentially non-oscillatory (ENO) schemes introduced by
Harten, Osher, and others has been transferred to the case of compressible flow computations
on unstructured triangular grids in two space dimensions [HC91, A94, S97].

When implementing the method of Abgrall we noticed that there are some technical
problems that should be worked out and written down in more detail than has been done in
the past. Furthermore we noticed that the second order method worked quite well but the
third order method did not show the accuracy we expected. Especially in smooth regions
on relatively coarse grids the quality of the obtained results was poor.

One workaround known so far is to use ENO only near discontinuities and to use a
central reconstruction technique in smooth regions. Another possibility is demonstrated
in [LOC94] for the one-dimensional case. There the main idea of the ENO method is
modified. Instead of computing a set of several reconstruction polynomialsp1, . . . , pm and
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then digitally selecting thatpj with the minimal oscillation, a new polynomialp is computed
as a weighted sum of all polynomials:p= ∑m

i=1ωi pi . The weightsωi are chosen depending
on the oscillation of thepi such that aωi is low if the oscillation ofpi is high whileωi

is of order one ifpi has low oscillation. The resulting new scheme is called aweighted
ENOscheme while for differentiation the original ENO scheme is called thedigital ENO
scheme. By setting exactly one weightω j to one and all other weights to zero the digital
ENO scheme can be interpreted as a special case of the weighted ENO scheme.

We have applied that new technique to the case of flows on unstructured triangular grids
in two dimensions.

We will first describe our method for compressible flow computation in short and will then
concentrate on the reconstruction problem: In Section 2 some fundamentals and notations
concerning reconstruction of mean values are given. In Section 3 the whole reconstruction
algorithm is described in detail. Some numerical applications can be found in Section 4.

1.1. Governing Equations

For any bounded control volumeÄ ⊂ R2 the Euler equations for compressible flows in
two dimensions can be written in integral form as

d

dt

∫
Ä

Q(x, t) dx = −
∫
∂Ä

F(Q(x, t)) · n ds, (1)

wheren = (n1, n2) is the outer unit normal to the boundary ofÄ denoted as∂Ä. The vector
of conserved variablesQ= Q(x, t) and the convective fluxesF(Q)= (F1(Q), F2(Q)) are
given by

Q =


ρ

ρv1

ρv2

ρE

 ,

F1(Q) =


ρv1

ρv2
1 + p
ρv1v2

(ρE + p)v1

 ,

F2(Q) =


ρv2

ρv1v2

ρv2
2 + p

(ρE + p)v2

 .
The system is closed by the equation of state,

p = (γ − 1)ρ
(
E − 0.5

(
v2

1 + v2
2

))
,

whereγ = 1.4 for all our computations.

1.2. Finite Volume Formulation

Computational cells are constructed from a triangulation of the computational domain
by barycentric subdivision. This means that a cellÄk is constructed around each pointPk
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FIG. 1. Section of a triangulation (dashed) and corresponding cells (solid, some shaded).

of the triangulation by connecting the barycenters (centers of mass) of the triangles having
Pk in common and the midpoints of the edges between these triangles (see Fig. 1). Note
that there is a one-to-one relationship between the grid points of the triangulation and the
cells of the so constructed computational grid.

The cellsÄk are used as discrete control volumes. Then the semi-discrete finite volume
formulation of Eq. (1) is given by

d

dt
Q̄k(t) = −

1

|Äk|
∫
∂Äk

F(Q(x, t)) · n ds (2)

with the short form

d

dt
Q̄k(t) = Lk(Q(x, t)),

where

Q̄k(t) := 1

|Äk|
∫
Äk

Q(x, t) dx

is the (spatial) mean value ofQ(x, t) at timet overÄk and|Äk| is a short notation for the
area ofÄk.

1.3. Spatial Discretization

A cellÄk is polygonally bounded. This means that the boundary ofÄk is given by a finite
number of line segments:

∂Äk =
⋃

j

0 j .

Thus, the boundary integral from Eq. (2) can be decomposed into∫
∂Äk

F(Q(x, t)) · n ds=
∑

j

∫
0 j

F(Q(x, t)) · n ds. (3)

Note thatn is constant on each0 j . The line integral from (3) is discretized using ap point
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Gaussian integration formula. We usedp = 2 for all our computations. LetG1, . . . ,Gp

andw1, . . . , wp be the Gaussian points and weights on line segment0 j .
Given the end pointsP1 andP2 of0 j for p = 1 the Gaussian point is just the mid-point of

0 j : G1 = 1/2(P1+ P2) and the weightw1 is one. Forp = 2 defineα := (√3+1)/(2
√

3).
ThenG1 = αP1+ (1− α)P2,G2 = (1− α)P1+ αP2 andw1 = w2 = 1/2.

Using the integration formula we get the following approximation:∫
0 j

F(Q(x, t)) · n ds≈ |0 j |
p∑

l=1

wl F(Q(Gl , t)) · n. (4)

The finite volume method will compute approximations for the spatial mean values
Q̄k(t). From these mean values we reconstruct polynomial representations for theprimitive
variablesρ, v1, v2, p on eachÄk. The reconstruction procedure is the main topic of this
paper and is discussed later in detail. Let us now assume that on each cellÄk we have a poly-
nomial representation of the primitive variables. From these polynomials we can now deduce
a functional representatioñQk(x, t) on eachÄk.

The reconstruction procedure does not forceQ̃k(x, t) to be continuous over the cell
boundaries. Hence, the boundary integrals cannot be computed or approximated directly as
described above. Instead, a numerical flux functionF̃ is used to approximate the values on
the cell boundaries. We use the numerical flux of Osher and Solomon that is described in
[OS82]. LetÄN ( j ) be the cell touchingÄk at line segment0 j . Then the flux evaluation in
the right hand side of Eq. (4) is replaced as

F(Q(Gl , t)) · n ≈ F̃(Q̃k(Gl , t), Q̃N ( j )(Gl , t); n).

Taking together the above discretizations and approximations results in spatially discre-
tized equations for (2):

d

dt
Q̄k(t) = L̃k(Q̄k(t)). (5)

1.4. Temporal Discretization

Equation (5) defines a finite set of ordinary differential equations. These are discretized us-
ing thekth order version of the TVD Runge–Kutta scheme described in [SO88]. Let the time
step size be given by1t . For convenience we definēQ(0)

k := Q̄k(t) andQ̄k(t+1t) := Q̄(k)
k .

Fork = 2 the scheme is given by

Q̄(1)
k := Q̄(0)

k +1tL̃k
(
Q̄(0)

k

)
,

Q̄(2)
k := 1

2
Q̄(0)

k +
1

2
Q̄(1)

k +
1

2
1tL̃k

(
Q̄(1)

k

)
.

The scheme fork = 3 is

Q̄(1)
k := Q̄(0)

k +1tL̃k
(
Q̄(0)

k

)
,

Q̄(2)
k := 3

4
Q̄(0)

k +
1

4
Q̄(1)

k +
1

4
1tL̃k

(
Q̄(1)

k

)
,

Q̄(3)
k := 1

3
Q̄(0)

k +
2

3
Q̄(2)

k +
2

3
1tL̃k

(
Q̄(2)

k

)
.
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2. RECONSTRUCTION OF MEAN VALUES

For the remainder of the paper we will treat the following problem:Given(spatial) mean
valuesūk of a function u(x) for each cellÄk and a positive integer number n, for eachÄl

find a polynomial p(x) of degree n that is a good approximation to u(x) on cellÄl and
which has the mean valuēul onÄl . For our flow solver this problem has to be solved for
ūk replaced by the mean values of the primitive variablesρ, v1, v2, p onÄk.

For convenience some notations will be fixed. The (spatial) mean value of a function
f (x) on a cellÄl is written as

〈 f (x)〉Äl := 1

|Äl |
∫
Äl

f (x) dx. (6)

To obtain a short notation for a polynomial in two space dimensions we use multi-indices. For
α= (α1, α2), αi ∈ {0, 1, 2, . . .}, andx= (x1, x2)∈R2 let |α| :=α1+α2 andxα = x(α1,α2) :=
xα1

1 xα2
2 .

The number of allα with |α| ≤n is denoted byN(n). It is N(0)= 1, N(1)= 3, and
N(2)= 6. We assume that the set{α : |α| ≤n} is ordered such that we can use multi-indices
in a natural way as indices for vectors and matrices. Forn= 1 we use{(0, 0), (1, 0), (0, 1)};
{(1, 1), (2, 0), (0, 2)} is appended forn= 2.

Let bl denote the barycenter of cellÄl . For givenn the following standard expansion of
a polynomialp(x) for Äl is taken,

p(x) =
∑
|α|≤n

aα(x − bl )
α, (7)

where theaα ∈R, |α| ≤n are the unknown coefficients.
To fix theaα at leastN(n) conditions are required. These are taken to be interpolation

conditions for the given mean values. Let us for the sake of simplicity reconstruct a polyno-
mial for cellÄ1. We take additionalN(n)− 1 cells that shall again for the sake of simplicity
be numberedÄ2 toÄN(n). The resulting set of cells

S := {Ä1, Ä2, . . . , ÄN(n)}

is called astencil.
ThenN(n) interpolation conditions are given by

〈p(x)〉Ä1
= ū1,

〈p(x)〉Ä2
= ū2,

· · ·
〈p(x)〉ÄN(n)

= ūN(n).

It is obvious that the above conditions form a linear system ofN(n) equations for theN(n)
unknownsaα, |α| ≤ n if the 〈p(x)〉Äk are expanded:

〈p(x)〉Äk =
〈∑
|α|≤n

aα(x − b1)
α

〉
Äk

=
∑
|α|≤n

aα
〈
(x − b1)

α
〉
Äk
.
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This system can be written in a compact matrix form as

Aa = ū,

with

Ak,α =
〈
(x − b1)

α
〉
Äk
= 1

|Äk|
∫
Äk

(x − b1)
α dx, 1≤ k ≤ N(n), |α| ≤ n,

wherea is the vector of theN(n) unknownsaα, |α| ≤n, and ū= (ū1, . . . , ūN(n)) is the
vector of the given mean values.

The stencilS is calledadmissibleif the system is uniquely solvable, which is equivalent
to the condition that the matrixA is invertible.

3. THE RECONSTRUCTION ALGORITHM IN DETAIL

Let us now come to the complete description of the reconstruction algorithm that is the
key component of our weighted ENO scheme.

A reconstruction polynomial for each cellÄk has to be computed, but the scheme is local in
the sense that the reconstruction polynomial for cellÄl can be computed independently from
the reconstruction polynomial for cellÄk. For this reason we describe the reconstruction
algorithm for only one cellÄl .

In principle the reconstruction algorithm is quite clear:

1. Find some admissible stencilsS1, . . . , Sm.
2. For each of these stencilsSi compute the reconstruction polynomialpi from theūk.
3. For each of thepi compute the oscillation.
4. Depending on the oscillations of thepi compute non-negative weightsωi such that

the sum of theωi is one.
5. Compute the reconstruction polynomialp as the weighted sum of thepi : p :=∑m

i=1ωi pi .

Note that only the last step is trivial. In the following subsections we will have a closer look
at the other steps of the algorithm.

3.1. Selection of Admissible Stencils

3.1.1. The Admissibility Condition

Unfortunately we do not know if there is a (simple) geometrical property giving us the
admissibility of a stencil for a polynomial degree greater than one. So we first select stencils
Si which are probably inadmissible. Later, during the computation of the polynomialspi ,
the inadmissibility is detected and those stencils are skipped.

3.1.2. Selection of Stencils

After some testing it can be said that stencil selection is a very critical part of the recons-
truction algorithm; some more or less contradictory aspects have to be taken into account:

• The number of stencils should be low to keep the computational costs low.
• To obtain high accuracy and stability in smooth regions it is necessary that the

stencils have a small diameter and that they are well centered with respect toÄl .
• On the other hand ENO methods are based on the idea that in case of non-smooth

dataūk one-sided stencils are selected to avoid interpolation across discontinuities.
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FIG. 2. Different types of stencils for quadratic reconstruction.

Furthermore, stencil selection is the only part of the algorithm that depends on the kind of
the chosen spatial discretization. Our spatial discretization has a topological property which
we use within the stencil selection: If two cells have a common point then they already have
a line segment in common. We call such touching cellsneighbors.

Polynomial degree 1. For a polynomial degreen= 1 the required stencil size is three.
We select all those sets of three cells{Äl , Äa, Äb} as stencils for cellÄl which have the
following properties:

• Äa is a neighbor ofÄl , and
• Äb is a neighbor ofÄl and ofÄa.

Polynomial degree 2. For a polynomial degreen= 2 the required stencil size is six. We
select all those sets of six cells{Äl , Äa, Äb, Äc, Äd, Äe} as stencils for cellÄl which have
the following properties: First,{Äl , Äa, Äb} has to be a selected stencil for polynomial
degreen= 1. Second,Äc, Äd, andÄe have to fulfill one of the following three conditions
(see Fig. 2 for an example of each type;Äl is dark shaded):

(1) Central stencil:
• Äc is a neighbor ofÄl and ofÄa, and
• Äd is a neighbor ofÄl and ofÄb, and
• Äe is a neighbor ofÄl and of eitherÄc orÄd.

(2) Almost central stencil:
• Äc is a neighbor ofÄl and ofÄa, and
• Äd is a neighbor ofÄl and ofÄb, and
• Äe is a neighbor ofÄa and ofÄb.

(3) One-sided stencil:
• Äc is a neighbor ofÄa and ofÄb, and
• Äd is a neighbor ofÄa and ofÄc, and
• Äe is a neighbor ofÄb and ofÄc.

For most cells of our grids, the number of neighbors is six as in the figure. That means that
the number of stencils with each type is six, resulting in a total number of 18 stencils for
quadratic reconstruction.

3.2. Computation of the Reconstruction Polynomial for One Stencil

For this subsection we focus on one fixed stencilS. Furthermore we assume that the
cells are enumerated such thatS={Ä1, . . . , ÄN(n)} and that we are going to reconstruct a
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polynomial for cellÄ1 with the standard representation (see Eq. (7))

p =
∑
|α|≤n

aα(x − b1)
α.

It is a mathematically uniquely solvable problem to compute theaα for any dataūk if S is
an admissible stencil, but in practice one encounters two serious difficulties:

• For the matrix entries〈(x − b1)
α〉Äk integrals

∫
Äk
(x − b1)

α have to be computed
which is not trivial for|α| > 1.
• The resulting matrix has a condition number which grows likeh−n, whereh is the

mesh width (see [A94]).

3.2.1. Computation of the Matrix Entries

Obviously for eachk 〈
(x − b1)

(0,0)
〉
Äk
= 1,〈

(x − b1)
(1,0)
〉
Äk
= (bk − b1)1,〈

(x − b1)
(0,1)
〉
Äk
= (bk − b1)2.

For |α|> 1 there are two options for the computation of
∫
Äk
(x − b1)

α: First, the cellÄk

can be subdivided into triangles and a quadrature rule that is exact for at least polynomial
degree|α| can be used. Second, a primitive functionXα for xα in the sense that∇ ·Xα = xα

can be used to reduce the problem to a boundary integral which can then be solved with a
line integration quadrature rule on the boundary edges ofÄk like it is described in [HMS96].
We choose the second technique because it fits very well into the environment of our finite
volume flow solver.

For |α| =2 the following three primitive functions are used:

X(2,0)(x1, x2) :=
(

1

3
x3

1, 0

)
,

X(0,2)(x1, x2) := (x1x2
2, 0
)
,

X(1,1)(x1, x2) :=
(

1

2
x2

1x2, 0

)
.

Note, that in any case the computation of the
∫
Äk
(x − b1)

α is quite expensive. Thus, one
could try to compute them only once and store them for later use. However, the number of
cellsÄk appearing in stencils for quadratic reconstruction of one cellÄ1 is approximately
20. Thus, storing all these integrals for all cells would cost too much memory.

This can be circumvented by rewriting the integrals. One finds that for|α| =2

〈(x − b1)
α〉Äk = (bk − b1)

α + 〈(x − bk)
α〉Äk .

Using this formula in the quadratic case it is sufficient to store the values〈(x − bk)
(2,0)〉Äk ,

〈(x−bk)
(0,2)〉Äk , and〈(x−bk)

(1,1)〉Äk for each cellÄk. The barycentersbk have to be stored
in any case.
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3.2.2. Circumventing Bad Condition Numbers of the Interpolation Matrix

Let us first look at the standard representation of the reconstruction polynomialp of cell
Ä1. The corresponding interpolation matrixA is given by

Ak,α := 〈(x − b1)
α〉Äk , 1≤ k ≤ N(n), |α| ≤ n.

One should note that there are two possible reasons for a bad condition number ofA. First,
the condition number grows likeh−n if the computational grid gets finer. Second, stencil
S may be (almost) inadmissible. The second reason cannot be circumvented easily (see
above). One has to detect this and skip this stencil.

The bad behavior of the condition number on grid refinement can be circumvented by
replacing the standard representation of the polynomialp.

Interpolation using barycentric coordinates.Abgrall in [A94] changes the standard
representation (7), see earlier, into an expansion that uses barycentric coordinates.

Therefore he takes one of the admissible stencilsSi . There exists at least one subset of
three cells out ofSi which is an admissible stencil for polynomials of degree one. For a
simple notation we assume that this subset is given by{Ä1, Ä2, Ä3}. He considers the three
polynomials3i of degree one, defined by

〈3i 〉Ä j = δ j
i , 1≤ i ≤ 3, 1≤ j ≤ 3,

whereδ j
i denotes the Kronecker symbol. One finds that31+32+33= 1. These polyno-

mials are the barycentric coordinates of the triangle formed by the barycenters ofÄ1, Ä2,
andÄ3. Using32 and33, Abgrall obtains a new representation ofp:

p =
∑
|α|≤n

âα3
α1
2 3

α2
3 .

The corresponding interpolation matrix̂A,

Âk,α := 〈3α1
2 3

α2
3

〉
Äk
, 1≤ k ≤ N(n), |α| ≤ n,

has a condition number which is independent fromh (see [A94]).

Interpolation using scaling. We here introduce a simpler technique to obtain a condition
number independent fromh. We define a local scaling factor

s := 1√
|Ä1|

which can be read as an approximation to 1/h and change the standard representation (7)
into

p =
∑
|α|≤n

ãαs|α|(x − b1)
α. (8)
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The interpolation matrixÃ for this representation is given by

Ãk,α := 〈s|α|(x − b1)
α
〉
Äk
, 1≤ k ≤ N(n), |α| ≤ n.

Note thatÃk,α = s|α|Ak,α and we get the standard representation (7) very easily from (8):
aα = s|α|ãα.

Remark 1. The matrixÃ is invariant with respect to grid scaling. That means, given an
affine transformationT of the form

T : R2→ R2, x 7→ f x + y, 0< f ∈R, y∈R2

and given the transformed cellsT (Äk) and the transformed barycentersT (bk) then
the matrixÃ(T ) belonging to this transformed geometry is identical toÃ. Especially, the
condition number ofÃ(T ) does not depend on the scaling factorf .

The proof of this remark is a simple application of the transformation rule for integrals:
For the scaling factors(T ) computed from the transformed cellT (Ä1) we find

s(T ) = 1√
|T (Ä1)|

= 1√
f 2|Ä1|

= s

f
.

For 1≤ k ≤ N(n) and|α| ≤ n we have

Ã(T )k,α =
1

|T (Äk)|
∫
T (Äk)

(
s(T )
)|α|
(T (x)− T (b1))

α dT (x)

= 1

f 2|Äk|
∫
Äk

(
s

f

)|α|
( f x − f b1)

α f 2 dx

= 1

|Äk|
∫
Äk

s|α|(x − b1)
α dx = Ãk,α.

Remark 2. It should be mentioned that the presented scaling technique only solves
the condition problems induced by the regular refinement or scaling of regular grids. For
distorted meshes like those for Navier–Stokes computations this simple scaling would not
help much. In such cases the use of barycentric coordinates should be preferred.

Final remarks on the condition problem.Consider that we wish to use the standard
representation (7) ofp. To prevent the condition problems during the computation ofp’s
coefficientsaα we first use our scaling technique and compute the coefficientsãα of the scaled
representation. Second, we obtain the standard representation by computingaα = s|α|ãα.

What happens with theaα and with p if they are computed this way and the right hand
dataūk are changed by a perturbation of magnitudeε?

Due to the scaling technique that omits the condition problems, the perturbation of theãα
is also of magnitudeε, independent from the grid spacingh, but the perturbation of theaα
is of magnitudeε/h|α|. This shows that also this method for computing the coefficients
aα has a condition number of 1/hn; but if

p(x) =
∑
|α|≤n

aα(x − b1)
α
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is evaluated for‖x − b1‖ of magnitudeh then the perturbation ofp(x) is of magnitudeε
because the powers ofh within (x− b1)

α eliminate the powers of 1/h within the perturbation
of aα. In this sense the condition problem really is omitted by computing the standard
representation using the scaled representation as described above.

3.3. Choice of an Oscillation Indicator

Given a polynomialp(x)= ∑|α|≤n aα(x− bl )
α for cellÄl we are searching for an indi-

cator that measures the smoothness ofp or, equivalently, detects how muchp oscillates. In
[A94] it is shown that as in the one-dimensional case the sum of the leading coefficient’s
absolute value

OI1(p) :=
∑
|α|=n

|aα|

has the property to tend to infinity if the mesh widthh tends to zero and the data have a
discontinuity in thekth derivative,k< n, while it remains always bounded if the data are
smooth. Thus, the valueOI1 can be used as an oscillation indicator.

Aiming at the minimization of total variation one could think of using theL1-norm of
the first derivatives ofp which we are normalizing to

OI2(p) :=
∑
|α|=1

∫
Äl

h−2|Dα p(x)| dx.

Because theL1-norm is quite complicated to evaluate on our two-dimensional control
volumes theL2-norm can be used instead. This leads to

OI3(p) :=
(∑
|α|=1

∫
Äl

h−2(Dα p(x))2 dx

) 1
2

.

In [JS96] a new measurement for smoothness is presented. In our two-dimensional envi-
ronment we are normalizing that indicator in a different way and come to

OI4(p) :=
( ∑

1≤|α|≤n

∫
Äl

h2|α|−4(Dα p(x))2 dx

) 1
2

.

Numerical tests with classical shock-tube problems were carried out to compare the indi-
catorsOI1, OI3, andOI4 for n = 2. The results can be viewed in Subsection 4.2.

It turns out that indicatorOI1 is not suitable. Although it detects discontinuities of the
dataūk as well as discontinuities of the first derivatives, the obtained solutions oscillate
significantly. This may be explained by the extreme sensibility of the high order coefficients
as described in Subsection 3.2.2. On the other hand indicatorOI3 works very well. Only
small overshoots at discontinuities of the solution’s first derivative can be seen. These
decrease if the mesh width decreases.

With indicatorOI4 the solutions are very similar to those obtained with indicatorOI3. At
a closer look features slightly sharper are resolved and overshoots are slightly smaller with
OI4 so this indicator is the first choice. Note that removing theh2|α| weights withinOI4
results in an indicator that behaves similar toOI1, hence, these weights are really essential.
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3.4. Computation of Weights from the Oscillation Indicators

It should first be mentioned that the digital ENO scheme can be obtained by simply
setting

ωi :=
{1 if OI(pi ) = min

k=1,...,m
OI(pk),

0 else.

Here one has to assume that there is only one minimum.
Choosing more than one weight different from zero leads to the weighted ENO scheme.

Note that in any case the sum of theωi has to be 1 and weights must not be negative.
In our unstructured two-dimensional environment we cannot hope to improve the order

of accuracy by choosing the right weights like in the one-dimensional case (see [LOC94,
JS96]).

Let us assume that we have selectedm admissible stencilsS1, . . . , Sm and that for each
Si the reconstruction polynomialpi of the datāuk was computed. The weightsωi are then
computed as

ωi := (ε +OI(pi ))
−r∑m

k=1(ε +OI(pk))−r
,

wherer is a positive integer. In [LOC94] the “ENO property” is defined. It would require
here that for a stencilSi in a smooth regionωi is of magnitude 1 while forSi in a discontinues
regionωi is of magnitudehm. To fulfill this property we would have to setr tom for indicators
OI3 as well as forOI4. On the other hand this powerm within the definition of the “ENO
property” seems quite arbitrary, so we forget about this strict definition and only use the
principle idea that for stencils in a smooth region the weight should be of magnitude one
while it should below for stencils in a discontinues region. This is fulfilled for any posi-
tive r .

A strong property of the weighted ENO scheme is that in smooth regions the reconstruc-
tion is very smooth and stable. This property is partially lost ifr is chosen too large. In that
case the scheme tends to behave like the classical digital switching ENO scheme.

We did computations for test cases with even strong discontinuities (see Subsection 4.2
and 4.3) which showed that at least forn ≤ 2, a power ofr = 4 is large enough. The same
was found in [JS96] in the one-dimensional case.

4. NUMERICAL APPLICATIONS

We have chosen three types of test cases: first, a smooth two-dimensional flow with an
analytically known solution to demonstrate the accuracy of the method; second, classical
one-dimensional shock-tube problems that were computed on a two-dimensional domain to
show the behavior of the method for non-smooth flows; and, third, a true two-dimensional
flow with strong discontinuities.

4.1. Ringleb’s Flow

In [AR-211] flow cases of fully exact analytic solutions are presented. We took Ringleb’s
flow which is defined by its streamlines. We used a computational domain that is bounded
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FIG. 3. Ringleb’s flow: Density contours of exact solution.

by streamlines(k = 0.4; k = 0.8) and by the iso-velocity line atq= 0.3. The domain and
the flow were rotated by 90◦ to obtain a left to right flow direction.

We used our Riemann solver with the outer state being the exact solution for boundary
treatment at all but the outflow boundary. For the outflow boundary, characteristic boundary
conditions were used.

In Fig. 3 one can see density contour lines of the interpolated exact solution. The aim
of this test case was to measure the accuracy of the method for different mesh widthsh.
In Fig. 4 the discreteL2 norm of the error in the density component is displayed over the
mesh widthh.

FIG. 4. Ringleb’s flow: DiscreteL2 norm of density error over mesh widthh (log-log plot).
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The computations were carried out with the digital ENO scheme and with the weighted
ENO scheme. For both schemes the oscillation indicatorOI4 was used. It should be
mentioned that the results for indicatorOI3 are very similar but the errors forOI3 are
slightly larger.

The functionsx, x2, andx3 are plotted so that one can compare with an idealistic 1st,
2nd, and 3rd order behavior. The 1st order finite volume method does not even reach a linear
progression withh.

The results for the weighted ENO method using polynomials of degreen= 1 (labeled
WENO linear) show an error behavior slightly better than quadratic. The error progression
for the corresponding digital ENO method (ENO linear) is similar but the error level is
significantly higher.

The results for the weighted ENO method using polynomials of degreen= 2 (WENO
quadratic) show an error progression better than cubic. Forn = 2 one notices an order loss
for the digital ENO method (ENO quadratic) to about second order.

The results demonstrate the clear advantage of the weighted ENO scheme over the digi-
tal ENO scheme in smooth flow regions. Note that these improvements do not require a
significant increase of computational work. Little additional work is only required for the
computation of the weightsωi and the weighted sumsp =∑m

i=1ωi pi which is negligible
compared to the overall costs of the scheme.

It should be mentioned that Ringleb’s flow is steady. With all of the used oscillation
indicators the weighed ENO scheme was able to drivedρ/dt to machine epsilon(≈10−15)

while the digital ENO scheme failed in this respect. It could not even reach 10−4.

4.2. Shock-Tube Problems

Two of the standard one-dimensional shock-tube problems were computed on a two-
dimensional grid. No special treatments to keep the flow one-dimensional were applied
(see Fig. 5).

The displayed one-dimensional results were obtained by extracting the data along the
central horizontal cut line. For all computations the degree of the reconstruction polynomials
was set ton = 2.

The first test case was proposed by Lax. It is defined by

(ρ,q, p) =
{
(0.445, 0.698, 3.528) if x< 0.5,
(0.5, 0, 0.571) if x> 0.5.

In Figs. 6 and 7 one can see density and velocity obtained for Lax’s problem with the
weighted ENO scheme using different oscillation indicators. With indicatorOI1 a significant
overshoot of the density at the contact discontinuity occurred although the resolution of the
discontinuities is not better than with indicatorsOI3 andOI4.

The velocity distribution shows that also in regions where the solution is continuous
but the first derivative is discontinuous the results obtained with indicatorsOI3 andOI4
are less oscillatory than those obtained withOI1. In this region indicatorOI4 shows some

FIG. 5. Shock-tube problems: Used grid corresponds to typical resolution of 100 points.
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FIG. 6. Lax’s problem: Density on the centerline; weighted ENO:OI1; OI3; OI4.

improvement overOI3: The height of the overshoot is smaller and at the same time the
resolution of all features is nowhere worse.

Even for this test case dominated by discontinuities the digital ENO scheme does not
provide better results. Comparing with Fig. 8 one can see that the weighted ENO scheme
using indicatorOI4 resolves the flow features sharper than the digital ENO scheme and at
the same time the overshoots are even a little smaller.

The second shock-tube problem is Sod’s problem which is defined as

(ρ,q, p) =
{
(1, 0, 1) if x < 0.5,
(0.125, 0, 0.1) if x > 0.5.

For this test case we present a comparison of the density distributions for the weighted ENO
scheme and the digital ENO scheme in Fig. 9. For both schemes oscillation indicatorOI4
was used.

Again we find that the weighted ENO scheme resolves the flow features slightly sharper
than the digital ENO scheme. For both schemes no kinds of overshoots or oscillations are
visible.

For this case we found the same ranking of the results’ qualities obtained with the different
indicators as for Lax’s problem but in this case the differences were less visible so that we
do not present the results for indicatorsOI1 andOI3 here.

4.3. Reflection of a Shock on a Wedge

We chose one test case from [WC84], theDouble Mach Reflection of a Strong Shock. We
used the setup that drives a shock down a tube which contains a wedge(30◦). The shock

FIG. 7. Lax’s problem: Velocity on the centerline; weighted ENO:OI1; OI3; OI4.
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FIG. 8. Lax’s problem: Density (left) and velocity (right) on the centerline; digital ENO;OI4.

moves with a Mach number of 10; the undisturbed air ahead the shock has a density of
1.4 and a pressure of 1. These data require a state of densityρ= 8, velocityu= 8.25, and
pressurep= 116.5 on the left hand side of the shock.

We did the computations on a grid with mesh widthh= 1/60 (16,316 grid points) and one
with h= 1/120 (63,497 grid points) (see Fig. 10). These data correspond to the medium and
the finest grid in [WC84]. The grids were constructed using the method described in [F93].

The computations where carried out with the weighted ENO and the digital ENO scheme
both using oscillation indicatorOI4. For this test case with reconstruction degreen= 2 we
needed a safety check for the reconstruction polynomial like the one described in [A94].
If a reconstructed value at an integration point of a cell was illegal (negative pressure or
density) then the reconstruction degree for that cell was reduced ton= 1. At some time
steps this happened for one or two cells inside the primary shock. Note that we did not
reduce the reconstruction degree at the boundary like it was done in [A94].

The results for the weighted ENO scheme shown in Figs. 11 and 12 are quite good when
compared to those in [JS96] and to the MUSCL results in [WC84]. The instabilities that
can be seen between the reflected shock and the wedge can also be seen in the MUSCL
results in [WC84].

Note that we used the reconstruction polynomials obtained from the flow solver to draw
the isolines locally on each cell. No interpolation procedure was utilized. This is the reason
for the discontinuous isolines that can be seen in some regions especially near the shocks.

FIG. 9. Sod’s problem: Density distribution on the centerline; weighted ENO; digital ENO;OI4.
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FIG. 10. Double Mach reflection: Section of the medium grid: triangulation; computational grid.

One can very well see the improvement achieved by the third order method(n = 2) over
the second order method(n = 1). The third order method results in a similar resolution of
the flow features on the medium grid (Fig. 11, right) as the second order method on the fine
grid (Fig. 12, left). If one takes into account that the fine grid has approximately 4 times as
many cells than the medium grid, that the time step size is halved, and that the computing
time of the third order method is approximately 4 times higher than that of the second order
method, then it is clear that the computing time for the third order method on the medium
grid is only half of the computing time for the second order method on the fine grid and
that the memory requirement saved is even more than a factor of two. In other words, for
this test case it is much more efficient to use the third method on a coarser grid instead of
the second order method on a finer grid.

In Fig. 13 one can see that also for the digital ENO scheme there is an improvement
when the polynomial degree is raised fromn= 1 ton= 2. But comparing Figs. 12 with 13
one can see again that the weighted ENO scheme is much more accurate than the digital
ENO scheme. Especially the contact discontinuity generated at the shock triple point and
the weak shock generated at the second Mach reflection are much sharper resolved by the
weighted ENO scheme. The result for the digital ENO scheme withn= 2 has about the

FIG. 11. Double Mach reflection: 30 density contour lines from 1.731 to 20.92 on the medium grid. Weighted
ENO,OI4: n = 1, 2.
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FIG. 12. Double Mach reflection: 30 density contour lines from 1.731 to 20.92 on the fine grid. Weighted
ENO,OI4: n = 1, 2.

same quality as the weighted ENO scheme on the same grid but with onlyn= 1. The same
correspondence was found for Ringleb’s flow (see Fig. 4).

5. CONCLUSIONS

The weighted ENO scheme applied to the Euler equations using unstructured grids was
demonstrated to be a massive improvement of the digital ENO scheme applied to the same
type of grids. One does not have to investigate much work to implement a weighted ENO
scheme from a classical digital ENO scheme.

The weighted ENO scheme is not much more expensive than the digital ENO scheme but
here one should mention that the inductive stencil selection technique presented in [A94]
which can reduce the costs of a digital ENO scheme cannot be applied.

The numerical results show that the weighted ENO scheme is more accurate than the
digital ENO scheme and at the same time it seems to be even more stable. This is a very nice
result because usually one loses stability when increasing the accuracy of a method. With
the weighted ENO scheme smooth flows can be computed much better than with digital
ENO schemes which can be seen clearly for Ringleb’s flow. Additionally, convergence to
machine accuracy for steady flows is obtained with the weighted ENO scheme while that
does not seem to be possible for the digital ENO scheme.

Seeing these advantages of the weighted ENO scheme over the digital ENO scheme one
should expect that it is applicable for an even wider range than the digital ENO scheme
already is.

FIG. 13. Double Mach reflection: 30 density contour lines from 1.731 to 20.92 on the fine grid. Digital ENO,
OI4: n = 1, 2.
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