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In this paper the weighted ENO (essentially non-oscillatory) scheme developed
for the one-dimensional case by Liu, Osher, and Chan is applied to the case of
unstructured triangular grids in two space dimensions. ldeas from Jiang and Shu,
especially their new way of smoothness measuring, are considered. As a starting
point for the unstructured case we use an ENO scheme like the one introduced by
Abgrall. Beside the application of the weighted ENO ideas the whole reconstruction
algorithm is analyzed and described in detail. Here we also concentrate on technical
problems and their solution. Finally, some applications are given to demonstrate
the accuracy and robustness of the resulting new method. The whole reconstruction
algorithm described here can be applied to any kind of data on triangular unstructured
grids, although it is used in the framework of compressible flow computation in this
paper only. © 1998 Academic Press

1. INTRODUCTION

During the last years the class of essentially non-oscillatory (ENO) schemes introduce
Harten, Osher, and others has been transferred to the case of compressible flow comput
on unstructured triangular grids in two space dimensions [HC91, A94, S97].

When implementing the method of Abgrall we noticed that there are some techn
problems that should be worked out and written down in more detail than has been do
the past. Furthermore we noticed that the second order method worked quite well bu
third order method did not show the accuracy we expected. Especially in smooth reg
on relatively coarse grids the quality of the obtained results was poor.

One workaround known so far is to use ENO only near discontinuities and to us
central reconstruction technique in smooth regions. Another possibility is demonstr
in [LOC94] for the one-dimensional case. There the main idea of the ENO metho
modified. Instead of computing a set of several reconstruction polynomials. , pm and
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then digitally selecting that; with the minimal oscillation, a new polynomiplis computed
as aweighted sum of all polynomials:= >, i pi. The weightsy; are chosen depending
on the oscillation of they such that av; is low if the oscillation ofp; is high while w;

is of order one ifp; has low oscillation. The resulting new scheme is callegegghted
ENO scheme while for differentiation the original ENO scheme is calleddtgal ENO
scheme. By setting exactly one weight to one and all other weights to zero the digita
ENO scheme can be interpreted as a special case of the weighted ENO scheme.

We have applied that new technique to the case of flows on unstructured triangular ¢
in two dimensions.

We will first describe our method for compressible flow computation in short and will th
concentrate on the reconstruction problem: In Section 2 some fundamentals and note
concerning reconstruction of mean values are given. In Section 3 the whole reconstru
algorithm is described in detail. Some numerical applications can be found in Section

1.1. Governing Equations

For any bounded control volunge c R? the Euler equations for compressible flows ir
two dimensions can be written in integral form as

d
—/Q(x,t)dX=—/ F(Q(x,t))-nds 1)
dt Jq a0

wheren = (ny, ny) is the outer unit normal to the boundary@enoted ag2. The vector
of conserved variable® = Q(x, t) and the convective fluxds(Q) = (F1(Q), F»(Q)) are
given by
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The system is closed by the equation of state,
p=(y —Dp(E—05(v+v3)),

wherey = 1.4 for all our computations.

1.2. Finite Volume Formulation

Computational cells are constructed from a triangulation of the computational don
by barycentric subdivision. This means that a €Bllis constructed around each poit
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FIG. 1. Section of a triangulation (dashed) and corresponding cells (solid, some shaded).

of the triangulation by connecting the barycenters (centers of mass) of the triangles he
P« in common and the midpoints of the edges between these triangles (see Fig. 1).
that there is a one-to-one relationship between the grid points of the triangulation anc
cells of the so constructed computational grid.

The cells, are used as discrete control volumes. Then the semi-discrete finite volt
formulation of Eq. (1) is given by

d — 1

—Qit) = —— F x,1)) -nds 2

OltQk() |Qk|/aQk (Q(x, 1)) (2
with the short form

d —
an(t) = Lk (Q(x, 1)),

where

1
t) = — ,tHd
Q1) TN QkQ(x ) dx

is the (spatial) mean value §i(x, t) at timet over Q and|Q| is a short notation for the
area ofQy.

1.3. Spatial Discretization

A cell @y is polygonally bounded. This means that the boundafy.ab given by a finite
number of line segments:

o =Jry.
]
Thus, the boundary integral from Eq. (2) can be decomposed into

/ F(Q(X,t))~ndS=Z/ F(Q(x, 1) -nds (3)
092 i T

Note thatn is constant on eachi;. The line integral from (3) is discretized usinggoint
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Gaussian integration formula. We uspd= 2 for all our computations. LeBy, ..., G,
andws, ..., w, be the Gaussian points and weights on line segiient

Given the end point®; andP, of I'; for p = 1 the Gaussian point is just the mid-point of
'j: Gy = 1/2(Py + P>) and the weightv; is one. Forp = 2 definex := (v/3+1)/(2V/3).
ThenGy=aP1+ (1 —a)P,, G, = (1 — )P + aP andw; = wy, = 1/2.

Using the integration formula we get the following approximation:

p
[ FQu.0)-ndsx 113w F QG 1) . (4)
i =1

The finite volume method will compute approximations for the spatial mean vall
dk(t). From these mean values we reconstruct polynomial representations fointitéve
variablesp, vy, v, p on eachQy. The reconstruction procedure is the main topic of thi
paper and is discussed later in detail. Let us now assume that on ea@hwelhave a poly-
nomial representation of the primitive variables. From these polynomials we can now det
a functional representatid@k(x, t) on eachty.

The reconstruction procedure does not fofgg(x, t) to be continuous over the cell
boundaries. Hence, the boundary integrals cannot be computed or approximated direc
described above. Instead, a numerical flux funcfis used to approximate the values or
the cell boundaries. We use the numerical flux of Osher and Solomon that is describ
[OS82]. Letf2y ;) be the cell touching2y at line segmenr’;. Then the flux evaluation in
the right hand side of Eq. (4) is replaced as

F(Q(GI, 1) - n~F(Qu(Gi, 1), Quj) (G, 1); N).

Taking together the above discretizations and approximations results in spatially dis
tized equations for (2):

d — L
an(t) = L (Q(1)). (%)

1.4. Temporal Discretization

Equation (5) defines afinite set of ordinary differential equations. These are discretize
ing thekth order version of the TVD Runge—Kutta scheme described in [SO88]. Let the ti
step size be given hit. For convenience we defmig(( ) = Qk(t) anko(t +At) = o ).

Fork = 2 the scheme is given by

2 = @ + AE(QF).

A2 = 200 + 50 + SAt(Q).
The scheme fok = 3 is

_f(1) — Q(0) + AtDy (Q(O))’

SR LI oI NN C)

2 ~
Q(g) = Q(o) Q(Z) + éALC (Q(Z))
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2. RECONSTRUCTION OF MEAN VALUES

For the remainder of the paper we will treat the following probl&iven(spatia) mean
valuesuy of a function yx) for each cell2x and a positive integer number for each &,
find a polynomial gx) of degree n that is a good approximation t¢xy on cell ; and
which has the mean value, on ;. For our flow solver this problem has to be solved fo
uk replaced by the mean values of the primitive varialles;, v, p on .

For convenience some notations will be fixed. The (spatial) mean value of a func
f (x) on a cellQ, is written as

(fX¥))g = [ fOOdx (6)

To obtain ashort notation for a polynomial in two space dimensions we use multi-indices.
o= (aq, ap), aj €{0,1,2,...},andx = (x1, X2) € R?let|a| := a1 + arp @andx® = x©@1:02) :=
X752

The number of allk with || <n is denoted byN(n). It is N(O)=1, N(1) =3, and
N(2) = 6. We assume that the det: |«| < n} is ordered such that we can use multi-indice:
in a natural way as indices for vectors and matricesnked we us€ (0, 0), (1, 0), (0, 1)};
{(1,1), (2,0), (0, 2)} is appended fon = 2.

Let by denote the barycenter of c&€b. For givenn the following standard expansion of
a polynomialp(x) for &, is taken,

PO = Y au(x — b)e, @)

le|=n

where theg, € R, || < n are the unknown coefficients.

To fix the a, at leastN(n) conditions are required. These are taken to be interpolati
conditions for the given mean values. Let us for the sake of simplicity reconstruct a poly
mial for cell2;. We take additionalN (n) — 1 cells that shall again for the sake of simplicity
be numbered?; to Q. The resulting set of cells

S:={Qq, Q, ..., Anm)

is called astencil
ThenN (n) interpolation conditions are given by

(P(X))gq, = U,
(P(X))gq, = U,

(PX)) gy = UNm)-

It is obvious that the above conditions form a linear system @f) equations for thé\ (n)
unknownsa,, |a| < nifthe (p(x))q, are expanded:

(P(X))g, = < D al(x - bl)“> =Y a((x—b)*), .
Qk

l|<n la|=n
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This system can be written in a compact matrix form as

Aa =u,
with
1
Aka = ((x—b)*), = — [ (x—bp*dx, 1<k=<N(), |a<n,
Q] Je
wherea is the vector of theN(n) unknownsa,, || <n, andu= (U, ..., Uym) is the

vector of the given mean values.
The stencilSis calledadmissibléf the system is uniquely solvable, which is equivalen
to the condition that the matriA is invertible.

3. THE RECONSTRUCTION ALGORITHM IN DETAIL

Let us now come to the complete description of the reconstruction algorithm that is
key component of our weighted ENO scheme.

Areconstruction polynomial for each cé€l has to be computed, butthe schemeislocali
the sense that the reconstruction polynomial for@ettan be computed independently from
the reconstruction polynomial for celli. For this reason we describe the reconstructic
algorithm for only one celf2,.

In principle the reconstruction algorithm is quite clear:

1. Find some admissible stencis, ..., Sy.

2. For each of these stenciscompute the reconstruction polynomgalfrom theuy.

3. For each of they, compute the oscillation.

4. Depending on the oscillations of tipecompute non-negative weights such that
the sum of they; is one.

5. Compute the reconstruction polynomialas the weighted sum of thg: p =

Eim=1 wi .
Note that only the last step is trivial. In the following subsections we will have a closer Ic
at the other steps of the algorithm.

3.1. Selection of Admissible Stencils
3.1.1. The Admissibility Condition

Unfortunately we do not know if there is a (simple) geometrical property giving us t
admissibility of a stencil for a polynomial degree greater than one. So we first select ste
S which are probably inadmissible. Later, during the computation of the polynomials
the inadmissibility is detected and those stencils are skipped.

3.1.2. Selection of Stencils

After some testing it can be said that stencil selection is a very critical part of the recc
truction algorithm; some more or less contradictory aspects have to be taken into acc

e The number of stencils should be low to keep the computational costs low.

e To obtain high accuracy and stability in smooth regions it is necessary that
stencils have a small diameter and that they are well centered with resg§gct to

e On the other hand ENO methods are based on the idea that in case of non-sn
datauy one-sided stencils are selected to avoid interpolation across discontinuities.
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FIG. 2. Different types of stencils for quadratic reconstruction.

Furthermore, stencil selection is the only part of the algorithm that depends on the kin
the chosen spatial discretization. Our spatial discretization has a topological property w
we use within the stencil selection: If two cells have a common point then they already F
a line segment in common. We call such touching aadligthbors

Polynomial degree 1. For a polynomial degree =1 the required stencil size is three.
We select all those sets of three cdlig, Q2,, Qp) as stencils for celf2) which have the
following properties:

e Q4 is aneighbor of;, and
e Qyis a neighbor of2) and ofQ2,.

Polynomial degree 2. For a polynomial degree= 2 the required stencil size is six. We
select all those sets of six cell&), Qa, Qb, ¢, 24, QLe} as stencils for celf2) which have
the following properties: Firs{€2, Q,, Qp} has to be a selected stencil for polynomia
degreen = 1. Second§2., 24, and<2e have to fulfill one of the following three conditions
(see Fig. 2 for an example of each tygg;is dark shaded):

(1) Central stencil:
e Q¢ is aneighbor of2, and ofQ2,, and
e Qg is a neighbor of?; and of2,, and
e Q¢ is aneighbor of2; and of eitheiQ2; or Qgq.

(2) Almost central stencil:
e Q¢ is aneighbor of2, and ofQ2,, and
e Qg is a neighbor of?; and of2,, and
e Q¢ is aneighbor of2, and ofQ2y,.

(3) One-sided stencil:
e Q¢ is aneighbor of2,; and of2,, and
e Qg is a neighbor of2, and of2, and
e Q¢ is aneighbor of2, and of 2.

For most cells of our grids, the number of neighbors is six as in the figure. That means
the number of stencils with each type is six, resulting in a total number of 18 stencils
guadratic reconstruction.

3.2. Computation of the Reconstruction Polynomial for One Stencil

For this subsection we focus on one fixed ste&iFurthermore we assume that the
cells are enumerated such ti&& {4, ..., Qnem} and that we are going to reconstruct &
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polynomial for cell2; with the standard representation (see Eq. (7))

p= > a,(x—bp~

la|=n

It is a mathematically uniquely solvable problem to computesthtor any dataly if Sis
an admissible stencil, but in practice one encounters two serious difficulties:

e For the matrix entrieg(x — b1)%)q, integralsfQk (X — bp)* have to be computed
which is not trivial for|a| > 1.

e The resulting matrix has a condition number which grows hik&, whereh is the
mesh width (see [A94]).

3.2.1. Computation of the Matrix Entries

Obviously for eactk
((x— bl)(o’o)>Qk =1
((x=b®) = (b — by,
((x— bl)(o’l)>Qk = (bx — by)2.

For |«| > 1 there are two options for the computationfgg: (X — by)¥: First, the cellQy
can be subdivided into triangles and a quadrature rule that is exact for at least polync
degreda| can be used. Second, a primitive functitipfor x* in the sense that - X, = x*
can be used to reduce the problem to a boundary integral which can then be solved v
line integration quadrature rule on the boundary edgé€xdike it is described in [HMS96].
We choose the second technique because it fits very well into the environment of our f
volume flow solver.

For |a| = 2 the following three primitive functions are used:

1
X2,0(X1, X2) i= <§Xf, 0>,
X0 (X1, %) i= (X1x5,0),

X(l,]_)(Xl, Xg) = <;XEX2, 0) .
Note, that in any case the computation of gl?zg(x — by)* is quite expensive. Thus, one
could try to compute them only once and store them for later use. However, the numb
cellsQy appearing in stencils for quadratic reconstruction of oneells approximately
20. Thus, storing all these integrals for all cells would cost too much memory.
This can be circumvented by rewriting the integrals. One finds thaifes 2

(X =b)*)g = (b — b)* + ((X — b)*) .

Using this formula in the quadratic case it is sufficient to store the values bk)(2’0)>Qk,
(x—=by)©2) g, and((x — bx) V) g, for each celk2y. The barycenters, have to be stored
in any case.
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3.2.2. Circumventing Bad Condition Numbers of the Interpolation Matrix

Let us first look at the standard representation of the reconstruction polynpwiiaell
;. The corresponding interpolation mattikis given by

Ao = (X =b)% g, 1<k=<N(n), o] <n.

One should note that there are two possible reasons for a bad condition numbérict,
the condition number grows like™" if the computational grid gets finer. Second, stenc
S may be (almost) inadmissible. The second reason cannot be circumvented easily
above). One has to detect this and skip this stencil.

The bad behavior of the condition number on grid refinement can be circumventec
replacing the standard representation of the polynomial

Interpolation using barycentric coordinatesAbgrall in [A94] changes the standard
representation (7), see earlier, into an expansion that uses barycentric coordinates.

Therefore he takes one of the admissible stergilghere exists at least one subset o
three cells out of§ which is an admissible stencil for polynomials of degree one. For
simple notation we assume that this subset is giveffhy Q2,, Q3}. He considers the three
polynomialsA; of degree one, defined by

(Ai)g, =8, 1<i<3 1<j<3

WhereSij denotes the Kronecker symbol. One finds that+ A, + Az = 1. These polyno-
mials are the barycentric coordinates of the triangle formed by the barycentis @b,
andQ3. Using A, and A3, Abgrall obtains a new representationpmf

P=) &A3AT.

le|<n
The corresponding interpolation matcik
Aca = (ASAS), . 1<k=<N®), |of <n,

has a condition number which is independent fitoiisee [A94]).

Interpolation using scaling. We here introduce a simpler technique to obtain a conditic
number independent froim We define a local scaling factor

1

Vel

which can be read as an approximation fdvland change the standard representation (
into

S=

p= Z 8,5 (x — by)“. (8)

le|=n
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The interpolation matrix4 for this representation is given by
Ao = (s"(x=b)*), . 1<k=<N(M), || <n.
Note thatﬁk,a = s*l Ay, and we get the standard representation (7) very easily from (
a, = s”a,.
Remark 1. The matrixA is invariant with respect to grid scaling. That means, given ¢
affine transformatiory” of the form

7 :R?> > R? Xt fx+y, O<feR, yeR?

and given the transformed cell6(Q2x) and the transformed barycentefs(bk) then
the matrix A7 belongmg to this transformed geometry is identicalioEspecially, the
condition number ot4 ’ does not depend on the scaling factor

The proof of this remark is a simple application of the transformation rule for integre
For the scaling factas”) computed from the transformed c&l($2;) we find

1 1 S
gD — _

JT@l JiaQy f

For 1< k < N(n) and|a| < nwe have

«n 1
ke T @01 S

Jex|
o (;) (fx — fby)® f2dx
Qi

(s (T () = T(by)* dT ()

1

=~ | selx—b)*dx = Ay,.
2 o, ( 1) K,

Remark 2. It should be mentioned that the presented scaling technique only sol
the condition problems induced by the regular refinement or scaling of regular grids.
distorted meshes like those for Navier—Stokes computations this simple scaling woulc
help much. In such cases the use of barycentric coordinates should be preferred.

Final remarks on the condition problemConsider that we wish to use the standar
representation (7) gp. To prevent the condition problems during the computatiop’sf
coefficientsa, we firstuse our scaling technique and compute the coeffidgtithe scaled
representation. Second, we obtain the standard representation by conagutisg'a,

What happens with tha, and with p if they are computed this way and the right hant
datauy are changed by a perturbation of magnitu@e

Due to the scaling technique that omits the condition problems, the perturbatiorggf th
is also of magnitude, independent from the grid spacihgbut the perturbation of tha,
is of magnitudes/ hl®!l, This shows that also this method for computing the coefficien
a, has a condition number of/ h"; but if

POO = D @y (x — by)*

lee|<n
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is evaluated fot{x — by || of magnitudeh then the perturbation gb(x) is of magnitudes
because the powerslofvithin (x — by)* eliminate the powers of/lh within the perturbation
of a,. In this sense the condition problem really is omitted by computing the stand
representation using the scaled representation as described above.

3.3. Choice of an Oscillation Indicator

Given a polynomialp(x) = Zlalsn a, (x — by)* for cell 2, we are searching for an indi-
cator that measures the smoothnesp of, equivalently, detects how mughoscillates. In
[A94] it is shown that as in the one-dimensional case the sum of the leading coefficie
absolute value

Oli(p) =Y lau|

la|=n

has the property to tend to infinity if the mesh widthiends to zero and the data have
discontinuity in thekth derivative k < n, while it remains always bounded if the data ar
smooth. Thus, the valuBl, can be used as an oscillation indicator.

Aiming at the minimization of total variation one could think of using thenorm of
the first derivatives op which we are normalizing to

Olo(p) = ) | h~?ID*p(x)|dx.
laj=1" &

Because thd.;-norm is quite complicated to evaluate on our two-dimensional conti
volumes thd_,-norm can be used instead. This leads to

Ols(p) = (Z /Q h—2<D“p<x>)2dx>

lee|=1

1
2

In [JS96] a new measurement for smoothness is presented. In our two-dimensional
ronment we are normalizing that indicator in a different way and come to

Ola(p) :=< > hz'““‘<D“p<x>)2dx>

1<laj<n /2

Numerical tests with classical shock-tube problems were carried out to compare the
catorsOlq, Olz, andOl, for n = 2. The results can be viewed in Subsection 4.2.

It turns out that indicato®l; is not suitable. Although it detects discontinuities of the
datauy as well as discontinuities of the first derivatives, the obtained solutions oscill
significantly. This may be explained by the extreme sensibility of the high order coefficie
as described in Subsection 3.2.2. On the other hand indi€dtoworks very well. Only
small overshoots at discontinuities of the solution’s first derivative can be seen. Tt
decrease if the mesh width decreases.

With indicatorOl, the solutions are very similar to those obtained with indic@tiar At
a closer look features slightly sharper are resolved and overshoots are slightly smaller
Ol so this indicator is the first choice. Note that removing hR&! weights withinOl,
results in an indicator that behaves similafy, hence, these weights are really essentia
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3.4. Computation of Weights from the Oscillation Indicators

It should first be mentioned that the digital ENO scheme can be obtained by sin
setting

{1 ifOI(pi):kmin Ol(pk),
wi = =1,....m

0 else

Here one has to assume that there is only one minimum.

Choosing more than one weight different from zero leads to the weighted ENO sche
Note that in any case the sum of thehas to be 1 and weights must not be negative.

In our unstructured two-dimensional environment we cannot hope to improve the o
of accuracy by choosing the right weights like in the one-dimensional case (see [LOC
JS96)).

Let us assume that we have seleateddmissible stencil§, . .., S, and that for each
S the reconstruction polynomigd of the datau, was computed. The weights are then
computed as

. e+ Ol
LT Y (e +Ol(p)

wherer is a positive integer. In [LOC94] the “ENO property” is defined. It would requir
here that for a stenc§ in a smooth regiom; is of magnitude 1 while fo§ in a discontinues
regionw; is of magnitudda™. To fulfill this property we would have to setomfor indicators
Ol3 as well as forOl4. On the other hand this powar within the definition of the “ENO
property” seems quite arbitrary, so we forget about this strict definition and only use
principle idea that for stencils in a smooth region the weight should be of magnitude
while it should bdow for stencils in a discontinues region. This is fulfilled for any posi
tiver.

A strong property of the weighted ENO scheme is that in smooth regions the reconst
tion is very smooth and stable. This property is partially lostiff chosen too large. In that
case the scheme tends to behave like the classical digital switching ENO scheme.

We did computations for test cases with even strong discontinuities (see Subsectio
and 4.3) which showed that at least fok 2, a power of =4 is large enough. The same
was found in [JS96] in the one-dimensional case.

4. NUMERICAL APPLICATIONS

We have chosen three types of test cases: first, a smooth two-dimensional flow wit
analytically known solution to demonstrate the accuracy of the method; second, clas
one-dimensional shock-tube problems that were computed on a two-dimensional dom:
show the behavior of the method for non-smooth flows; and, third, a true two-dimensic
flow with strong discontinuities.

4.1. Ringleb’s Flow

In[AR-211] flow cases of fully exact analytic solutions are presented. We took Ringle
flow which is defined by its streamlines. We used a computational domain that is bour
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FIG. 3. Ringleb’s flow: Density contours of exact solution.

by streamlinegk = 0.4; k = 0.8) and by the iso-velocity line af = 0.3. The domain and
the flow were rotated by 900 obtain a left to right flow direction.

We used our Riemann solver with the outer state being the exact solution for boun
treatment at all but the outflow boundary. For the outflow boundary, characteristic bount
conditions were used.

In Fig. 3 one can see density contour lines of the interpolated exact solution. The
of this test case was to measure the accuracy of the method for different mesh lwidtl
In Fig. 4 the discreté., norm of the error in the density component is displayed over tl
mesh widthh.

01

0.01 +

m1*x
m2*xA2 -
m3*x"3 -
1st order -— ]
WENO linear —+—
WENO quadratic -8— 1
ENO linear —»—
ENOQ quadratic -—

0.001

0.0001 |

0.15 0.2 0.3 0.5 0.7 1

FIG. 4. Ringleb’s flow: Discretd_, norm of density error over mesh width(log-log plot).
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The computations were carried out with the digital ENO scheme and with the weigt
ENO scheme. For both schemes the oscillation indic&hr was used. It should be
mentioned that the results for indicat®i; are very similar but the errors fadl3 are
slightly larger.

The functionsx, x?, andx® are plotted so that one can compare with an idealistic 1:
2nd, and 3rd order behavior. The 1st order finite volume method does not evenreach a|
progression with.

The results for the weighted ENO method using polynomials of degeeé (labeled
WENO linear) show an error behavior slightly better than quadratic. The error progres
for the corresponding digital ENO method (ENO linear) is similar but the error level
significantly higher.

The results for the weighted ENO method using polynomials of degee@ (WENO
quadratic) show an error progression better than cubicn Fe2 one notices an order loss
for the digital ENO method (ENO quadratic) to about second order.

The results demonstrate the clear advantage of the weighted ENO scheme over the
tal ENO scheme in smooth flow regions. Note that these improvements do not requ
significant increase of computational work. Little additional work is only required for tl
computation of the weights; and the weighted sums= >_"; @i p which is negligible
compared to the overall costs of the scheme.

It should be mentioned that Ringleb’s flow is steady. With all of the used oscillati
indicators the weighed ENO scheme was able to dfivélt to machine epsilor10-1°)
while the digital ENO scheme failed in this respect. It could not even reach 10

4.2. Shock-Tube Problems

Two of the standard one-dimensional shock-tube problems were computed on a
dimensional grid. No special treatments to keep the flow one-dimensional were apy
(see Fig. 5).

The displayed one-dimensional results were obtained by extracting the data alon
central horizontal cutline. For all computations the degree of the reconstruction polynon
was set tan = 2.

The first test case was proposed by Lax. It is defined by

( |_ [(044506083528  if x<05,
P-4 P =1 (05,0, 0571 if x> 0.5.

In Figs. 6 and 7 one can see density and velocity obtained for Lax’s problem with
weighted ENO scheme using different oscillation indicators. With indicatpa significant
overshoot of the density at the contact discontinuity occurred although the resolution o
discontinuities is not better than with indicat@$; andOl .

The velocity distribution shows that also in regions where the solution is continu
but the first derivative is discontinuous the results obtained with indic@&rand Ol,
are less oscillatory than those obtained with. In this region indicatoOl, shows some

FIG.5. Shock-tube problems: Used grid corresponds to typical resolution of 100 points.
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FIG. 6. Lax’s problem: Density on the centerline; weighted EN@D;; Ol3; Ol,.

improvement oveOls: The height of the overshoot is smaller and at the same time t
resolution of all features is nowhere worse.

Even for this test case dominated by discontinuities the digital ENO scheme does
provide better results. Comparing with Fig. 8 one can see that the weighted ENO sct
using indicatoiOl, resolves the flow features sharper than the digital ENO scheme an
the same time the overshoots are even a little smaller.

The second shock-tube problem is Sod’s problem which is defined as

( _[aoy if X < 0.5,
P-4 P)=10125001 ifx> 05

For this test case we present a comparison of the density distributions for the weighted |
scheme and the digital ENO scheme in Fig. 9. For both schemes oscillation inddzator
was used.

Again we find that the weighted ENO scheme resolves the flow features slightly sha
than the digital ENO scheme. For both schemes no kinds of overshoots or oscillation:
visible.

For this case we found the same ranking of the results’ qualities obtained with the diffe
indicators as for Lax’s problem but in this case the differences were less visible so tha
do not present the results for indicat@$, andOl3 here.

4.3. Reflection of a Shock on a Wedge

We chose one test case from [WC84], Beuble Mach Reflection of a Strong Shodke
used the setup that drives a shock down a tube which contains a W@&@geThe shock

0 02 04 06 08 1 [ 02 04 06 08 1 [ 02 04 08 08 1

FIG. 7. Lax’s problem: Velocity on the centerline; weighted ENQI3; Ol3; Ol,.
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FIG. 8. Lax's problem: Density (left) and velocity (right) on the centerline; digital EXDD),.

moves with a Mach number of 10; the undisturbed air ahead the shock has a dens;
1.4 and a pressure of 1. These data require a state of densig; velocityu = 8.25, and
pressurep = 1165 on the left hand side of the shock.

We did the computations on a grid with mesh willtk 1/60 (16,316 grid points) and one
withh=1/120 (63,497 grid points) (see Fig. 10). These data correspond to the medium
the finest grid in [WC84]. The grids were constructed using the method described in [F€

The computations where carried out with the weighted ENO and the digital ENO sch
both using oscillation indicatdDl,. For this test case with reconstruction degnee?2 we
needed a safety check for the reconstruction polynomial like the one described in [A
If a reconstructed value at an integration point of a cell was illegal (negative pressur
density) then the reconstruction degree for that cell was reducee=tb. At some time
steps this happened for one or two cells inside the primary shock. Note that we did
reduce the reconstruction degree at the boundary like it was done in [A94].

The results for the weighted ENO scheme shown in Figs. 11 and 12 are quite good v
compared to those in [JS96] and to the MUSCL results in [WC84]. The instabilities t
can be seen between the reflected shock and the wedge can also be seen in the M
results in [WC84].

Note that we used the reconstruction polynomials obtained from the flow solver to d
the isolines locally on each cell. No interpolation procedure was utilized. This is the rez
for the discontinuous isolines that can be seen in some regions especially near the sh

04l

03 |

o2 4 02

0.1 v L L . 0.1
0 02 04 06 08 1 [ 02 04 08 08 1

FIG. 9. Sod’s problem: Density distribution on the centerline; weighted ENO; digital EDIQ;
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FIG. 10. Double Mach reflection: Section of the medium grid: triangulation; computational grid.

One can very well see the improvement achieved by the third order m@the®) over
the second order meth@d = 1). The third order method results in a similar resolution ©
the flow features on the medium grid (Fig. 11, right) as the second order method on the
grid (Fig. 12, left). If one takes into account that the fine grid has approximately 4 time:
many cells than the medium grid, that the time step size is halved, and that the comp
time of the third order method is approximately 4 times higher than that of the second o
method, then it is clear that the computing time for the third order method on the med
grid is only half of the computing time for the second order method on the fine grid &
that the memory requirement saved is even more than a factor of two. In other words
this test case it is much more efficient to use the third method on a coarser grid inste:
the second order method on a finer grid.

In Fig. 13 one can see that also for the digital ENO scheme there is an improver
when the polynomial degree is raised frore= 1 ton = 2. But comparing Figs. 12 with 13
one can see again that the weighted ENO scheme is much more accurate than the
ENO scheme. Especially the contact discontinuity generated at the shock triple point
the weak shock generated at the second Mach reflection are much sharper resolved
weighted ENO scheme. The result for the digital ENO scheme miti? has about the

FIG.11. Double Mach reflection: 30 density contour lines from 1.731 to 20.92 on the medium grid. Weigh
ENO,Ol;:n=1,2.
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FIG. 12. Double Mach reflection: 30 density contour lines from 1.731 to 20.92 on the fine grid. Weigh
ENO,Ol;:n=1,2.

same quality as the weighted ENO scheme on the same grid but witimenly The same
correspondence was found for Ringleb’s flow (see Fig. 4).

5. CONCLUSIONS

The weighted ENO scheme applied to the Euler equations using unstructured grids
demonstrated to be a massive improvement of the digital ENO scheme applied to the
type of grids. One does not have to investigate much work to implement a weighted E
scheme from a classical digital ENO scheme.

The weighted ENO scheme is not much more expensive than the digital ENO schem
here one should mention that the inductive stencil selection technique presented in [
which can reduce the costs of a digital ENO scheme cannot be applied.

The numerical results show that the weighted ENO scheme is more accurate tha
digital ENO scheme and at the same time it seems to be even more stable. Thisis a ver
result because usually one loses stability when increasing the accuracy of a method.
the weighted ENO scheme smooth flows can be computed much better than with di
ENO schemes which can be seen clearly for Ringleb’s flow. Additionally, convergenc
machine accuracy for steady flows is obtained with the weighted ENO scheme while
does not seem to be possible for the digital ENO scheme.

Seeing these advantages of the weighted ENO scheme over the digital ENO schem
should expect that it is applicable for an even wider range than the digital ENO schi
already is.

FIG. 13. Double Mach reflection: 30 density contour lines from 1.731 to 20.92 on the fine grid. Digital EN
Olg:n=12.
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